Studies in aryltin chemistry. X '. Synthesis and NMR spectra (${ }^{119} \mathrm{Sn}$ and ${ }^{13} \mathrm{C}$) of some meta- and ortho-substituted tetra- and triaryltin compounds. The crystal and molecular structures of tris(m-tolyll - and tris(3,5-dimethylphenyl) tin(IV) chloride

Ivor Wharf ${ }^{\mathrm{a}, *}$. Michel G. Simard ${ }^{\text {b }}$
"Department of Chemistry and Chemical Techology, Dawson College, 3040 Sherbrooke St. W., Montreal, Qut., H3Z IA4. Canada

Received 26 February 1996; revised 4 September 199\%

Abstract

Several new tetra-aryltin compounds. $\mathrm{Ar}_{4} \mathrm{Sn}\left[\mathrm{Ar}=3,5-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}, 3,5-\mathrm{Z}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right.$, and $\left.m-\mathrm{ZC}_{6} \mathrm{H}_{4}(\mathrm{Z}=\mathrm{F}, \mathrm{Cl})\right]$ and $\mathrm{Ar}_{3} \mathrm{SnX}[\mathrm{X}=\mathrm{Cl}$, Br , I: $\mathrm{Ar}=3,5-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}, m$ - and $o-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} ; \mathrm{X}=\mathrm{Br} ; \mathrm{Ar}=m-\mathrm{ZC} \mathrm{C}_{6}(\mathrm{Z}=\mathrm{F} . \mathrm{Cl})$] have been synthesized by literature methods and complete solution NMR data $\left({ }^{119} \mathrm{Sn}\right.$. ${ }^{13} \mathrm{C}$) are reported for these and other meta- and orho-substituted aryltins. Meta-sulsitituents appear to exert electronic effects on chemicad shifts and coupling constants, but for ortho-substituents steric effects uppear to predominate. Crystal data show that metr-substituted $\mathrm{Ar}_{3} \mathrm{SnX}$ have trigonal unit cells in contrast to the monoclinic unit cells adopted by part- and ortho-substituted $\mathrm{Ar}_{3} \mathrm{SnX}$. Complete crystal structures are reported for ($\left.n-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{SnCl}: R 3, a=14.926 \mathbf{2}(15), c=$ $7.3482(12) \AA, Z=3$ and $\left.\left(3,5-\left(\mathrm{CH}_{3}\right), \mathrm{C}_{6} \mathrm{H}_{3}\right), \mathrm{SnCl}: R 3 c ; a=15.779(8), c=15.5934\right) \AA, Z=6$. In boith cases, all molecules have tuigonal symmetry, the first such examples to be reported.

Kevwords: Aryltin compounds; Substituent effects; NMR spectra; Crystal structures

1. Introduction

In earlier papers in this series, we have considered the effects of para-substituents on the vibrational [2] and NMR (${ }^{119} \mathrm{Sn},{ }^{13} \mathrm{C}$) [3] spectra, as well as on the crystal and molecular structures of terra- and triaryltin compounds $[4,5]$. The focus of these studies has now shifted to assessing the corresponding effects of metaand ortho-substituents, including those due to both substituent type and position [1].

Thus, following on our previous work [3] on parasubstituent effects in the tin-119 and carbon-13 NMR spectra of various $\mathrm{Ar}_{4} \mathrm{Sn}$ and $\mathrm{Ar}_{3} \mathrm{SnX}\left(\mathrm{Ar}=p-\mathrm{ZC}_{6} \mathrm{H}_{4}\right.$; $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$), we now extend these studies to metaand ortho-substituted analogues of the above compounds and compare our results with those obtained earlier for the $\mathrm{ArSn}\left(\mathrm{CH}_{3}\right)_{3}$ system [6].

In addition, while routine examination showed sev-

[^0]eral $\mathrm{Ar}_{+} \mathrm{Sn}$ to have the expected tetragonal space groups [4] and ($o-\mathrm{ZC}_{6} \mathrm{H}_{+}$) $\mathrm{SnX}\left(\mathrm{Z}=\mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{O} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Br}\right)$ to be monoclinic like the comesponding $\mathrm{Ph}_{3} \mathrm{SnX}$ [7], meta-substituted $\mathrm{Ar}_{3} \mathrm{SnX}$ unexpectedly crystallise in more symmetric trigonal space groups. This prompted the two full structure determinations reported here.

2. Experimental details

All experimental procedures including microanalyses and solution $\left(\mathrm{CDCl}_{3}\right)$ NMR spectra measurements were as described earlier !3 8]. Arylmercury(II) bromides prepared by the Grignard method using ether or tetrahydrofuran (THF) [9] were m-chlorophenylmercury(II) bromide: yield 50%; m.p. $221^{\circ} \mathrm{C}$ (acetone). Anal. Found: C. $18.37 ; \mathrm{H}, 0.96 . \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{BrClHg}$ Calc.: $\mathrm{C}, 18.38 ; \mathrm{H}$, 1.03% and the fluoro analogue: m.p. $239^{\circ} \mathrm{C}$ (lit. $241-$ $242^{\circ} \mathrm{C}$ [10]). Mercuration of mesitylene [11,12] gave mesitylmercury (II) bromide (mesityl $=2,4,6$ trimethylphenyl): m.p. 192-193 ${ }^{\circ} \mathrm{C}$ (lit. $194^{\circ} \mathrm{C}$ [13]).

The following aryltins have already been reported: $\mathrm{Ar}_{4} \mathrm{Sn} . \mathrm{Ar}=m$ - or $o-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}[1]$; (Mes) SnX_{3}, Mes $=2.4,6-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2} ; \mathrm{X}=\mathrm{Br}, \mathrm{I}[14]$.

2.1. Syntheses

All compounds used in this study were prepared by conventional methods, including those newly synthesised which are listed in Table 1.

2.1.1. Merhod (A)

The Grignard procedure [8]; also used to prepare (m-Tol $)_{4}$ Sn, m.p. $128^{\circ} \mathrm{C}$ (lit. $127.5-128.5^{\circ} \mathrm{C}$ [15]), ($o-$ Tol) ${ }_{4} \mathrm{Sn}$, m.p. $216^{\circ} \mathrm{C}$ (lit. $217.5-219.5^{\circ} \mathrm{C}$ [9]) ($\mathrm{Tol}=$ $\left.\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right),\left(m-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{4} \mathrm{Sn}$, m.p. $142^{\circ} \mathrm{C}$ (lit. $143^{\circ} \mathrm{C}$ [16]), and ($\left.p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{4} \mathrm{Sn}$, m.p. $148-149^{\circ} \mathrm{C}$ (lit. $150-151^{\circ} \mathrm{C}[9]$.

2.I.2. Methods (B) and (C)

The Kocheskov reaction as used for $(m-\mathrm{Tol})_{3} \mathrm{SnCl}$, m.p. $108^{\circ} \mathrm{C}$ (lit. $108^{\circ} \mathrm{C}$ [17]). (B) Several $\mathrm{Ar}_{3} \mathrm{SnBr}$ were prepared as ($\left.m-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{SnBr}$ [9] by refluxing a xylene solution of the ArHgBr (vide supra) with tin powder for one to two days (C).

2.1.3. Methods (D)-(F)

Triaryltin iodides were prepared by reacting the required $\mathrm{Ar}_{4} \mathrm{Sn}$ with iodine in refluxing CCl_{4} (D), e.g. tris(m-tolyl)tin iodide, m.p. $63-64^{\circ} \mathrm{C}$ (lit. $52^{\circ} \mathrm{C}[18]$), or by refluxing the $\mathrm{Ar}_{3} \mathrm{SnCl}$ with excess sodium iodide in acetone for two to threc days (E) [19]. Halide exchange (F) [15] to convert $\mathrm{Ar}_{3} \mathrm{SnX}$ to $\mathrm{Ar}_{3} \mathrm{SnY}$ through the hydroxide and aqueous HY was used to ohtain (α $\mathrm{Tol}_{3} \mathrm{SnBr}$, m.p. $102-104^{\circ} \mathrm{C}$ (lit. $101.4-101.9^{\circ} \mathrm{C}$ [9]) and $(\sigma \text { - } \mathrm{Tol})_{3}$ SnI. m.p. $119-120^{\circ} \mathrm{C}$ (lit. $119^{\circ} \mathrm{C}$ [20]) from $(o-\mathrm{Tul})_{3} \mathrm{SaCl}$, mu.p. $115-117^{\circ} \mathrm{C}$ (lit. $115.0-$ $115.7^{\circ} \mathrm{C}$ [9]) which was prepared by the literature procedure as was (m-Tol) $3_{3} \mathrm{SnBr}$, m.p. $106^{\circ} \mathrm{C}$ (lit. 104$105^{\circ} \mathrm{C}$ [15]).

2.2. X-roy diffruction studies

Crystals suitable for X -ray investigation were obtained by slow recrystallization from ethanol and X-ray data were collected on an Enraf-Nonius CAD-4 diffractometer. Cell parameters were derived from 25 reflections. A Laue symmetry check as well as a systematic absence verification was used to determine the space group. Complete crystal data sets were obtained for (a) $\mathrm{Ar}_{4} \mathrm{Sn}\left(\mathrm{Ar}=3,5-\mathrm{F}_{2} \mathrm{C}_{6} \mathrm{H}_{3}, m-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, \quad p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right) ;$

Table]

$\mathrm{Ar}^{\text {b }}$	Method ${ }^{\text {a }}$	Solvent ${ }^{\text {d }}$	M.p. (${ }^{\text {C }}$)	$C(\%)$	H (\%)
$\overline{A r_{4} S}$					
3.5-Xyl	(A)	ethanol	153-155	$71.38(71.26)$	6.75 (6.72)
$\mathrm{m}-\mathrm{ClC}_{6} \mathrm{H}_{4}$	(A)	acetone/ethanol	197-198	50.63 (51.06)	3.04 (2.86)
$3.5-\mathrm{Cl}_{7} \mathrm{C}_{6} \mathrm{H}_{3}$	(A)	acetone	161	41.25 (41.02)	1.86 (1.72)
$m-\mathrm{FC}_{6} \mathrm{H}_{4}$	$(\mathrm{A})^{*}$	acetone	186	57.82 (57.76)	3.48 (3.23)
3.5-F3C6 ${ }_{6}{ }_{3}$	(A)	acetone	201-202	49.82 (50.48)	2.26 (2.12)
$A r_{3} S n C l$					
3,5-Xyl	(B)	ethanol	150-151	61.68 (61.38)	5.91 (5.80)
m-Anis	(B)	ethanol	102-103	52.88 (53.04)	4.66 (4.45)
t-Anis	(F) ${ }^{\text {f }}$	ethanol	160-162	52.98 (53.04)	4.24 (4.45)
Mes	(F) E	acetone	169-171	63.38 (63.38)	6.62 (6.50)
$\mathrm{Ar}_{3} \mathrm{SnB} \mathrm{r}_{5}$					
$3.5-\mathrm{Xyl}$	(B)	ethanol	163-164	55.86 (56.07)	5.40 (5.29)
m-Anis	(B)	ethanol	90-92	48.02 (48.51)	4.16 (4.07)
o-Anis	(F) ${ }^{\text {f }}$	ethanol	168-170	48.86 (48.51)	3.55 (4.07)
$\mathrm{m}_{-1 \mathrm{Cl}}^{6} \mathrm{H}_{4}$	(C)	ethanol	67-69	39.60 (40.54)	2.06 (2.27)
$m-\mathrm{FC}_{6} \mathrm{H}_{4}$	(C)	- .	$\checkmark 20$	44.52 (44.68)	2.52 (2.50)
Ar, $\mathrm{Sn}^{\prime} /$					
3.5-Xy]	(D)	ethanol	147	51.32 (51.40)	4.72 (4.85)
m-Anis	(E)	ethanol	67-69	42.10 (44.49)	4.10 (3.73)
o-Anis	(D) ${ }^{\mathrm{h}}$	ethanal	160	44.17 (44.49)	3.88 (3.73)

[^1]Tahle ?
Crystallographic data and structure determination details

	$\left(\mathrm{m}-\mathrm{CH}_{3} \mathrm{C}_{\mathrm{n}} \mathrm{H}_{4}\right)_{3} \mathrm{SnCl}$	$\left(3.5-\left(\mathrm{CH}_{7}\right), \mathrm{C}_{6} \mathrm{H}_{3}\right)_{3} \mathrm{SnCl}$
Crsat datu (Mo Ka; $\lambda=0.70930 \mathrm{~A}$)		
Molecular formula (M)	$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClSn}(427.52)$	$\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{CISn}(469.62)$
Symmerry (space group)	Trigonal (R3)	Trigonal ($R 3 \mathrm{c}$)
Latice conswnts (A)	$a=14.9262(15), c=7.3482(12)$	$a=15.779(8), c=15.593(4)$
Cell volume (${ }^{\circ}{ }^{\text {a }}$): Z	1+17.8(3):	3362(2). 6
$D .\left(\mathrm{gcm}^{-3}\right)$	1.502	1.392
$T(\mathrm{~K})$	290	220
θ Ringe ($\mu\left(\mathrm{mm}^{-1}\right)$)	20-22 ${ }^{\circ}$ (1.50)	20-22 ${ }^{\circ}$ (1.27)
Datar collection		
Crystal size (mm^{3})	$\begin{aligned} & 0.25\{120,120\} \times 0.35\{011,011\} \\ & \times 0.39\{100,100\} \end{aligned}$	$\begin{aligned} & 0.19\{110,110) \times 0.25(130,120) \\ & \times 0.37(001,001\} \end{aligned}$
Stan type, $\theta_{\text {mav }}, \Delta \omega=(1.00+0.35 \tan \theta)^{\circ}$	$\omega / 26.25 .0{ }^{\circ}$	c. $25.0{ }^{\circ}$
h. $k .1$ ranges	$-14 \rightarrow 15.0 \rightarrow 17,0 \rightarrow 8$	$0 \rightarrow 16.0 \rightarrow 16,0 \rightarrow 18$
No. of standard reflections $\left(h^{-1}\right)$. intensity variations $(\%)$	7. ± 1.0	$7 . \pm 2.2$
Meusured reflections	3340	6630
Independent reflections ($\kappa_{\text {in: }}$)	1116 (0.020)	1199 (0.030)
Observed reflections. $I \geq 30$ (l)	1116	919
Structure solution mind refineme't:		
No. of parameters. reflections	99.558	115. 669
R, $\boldsymbol{R}_{\mathrm{w}}{ }^{\circ}, \mathrm{S}$	0.009, 0.011, 1.15	0.015.0.018.1.4
($1 / \sigma)_{\text {max }}$	0.35	0.38
$(\Delta \rho)_{\text {min }}(\Delta \rho)_{\text {max }}\left(\mathrm{E}^{\circ} \AA^{-3}\right)$	-0.26,0.12	-0.18, 0.40
Secondary extinction	Refined. 0.193(8)	Nor refined
Final $3 F$ map $\left(\mathrm{e} \AA^{-3}\right.$)		
General background	≤ 0.12	≤ 0.15
Highest praks (distances (\AA)) atom	none	$0.40,0.38(1.0 .1 .1) \mathrm{Sn}, 0.58(0.9 \mathrm{Cl}$
Bijueet test. hand probability level	0.8×10^{-19}	1.1×10^{-12}

[^2](b) $\mathrm{Ar}_{3} \mathrm{SnX}\left(\mathrm{X}=\mathrm{Cl}, \mathrm{Br} ; \mathrm{Ar}=m\right.$ - and $a-\mathrm{ZC}_{6} \mathrm{H}_{4}(\mathrm{Z}=$ $\mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{O}$)).

For the structure determinations, data collection parameters for tris(m-tolyl)tin chloride (I) and tris($3,5-\mathrm{di}$ methylphenyl)tin chloride (II) are reported in Table 2. Intensity data were corrected for Lorentz and polarisation effects, but not for absorption. Structure calculations were performed using NRCVAX sofiware [21]Structure 1 was solved by direct methods (shelxs-86) [22] and structure II by the heavy atom method, then both completed using difference Fourier syntheses. For both compounds, the molecules were located on threefold axes, so the asymmetric unit was composed of tin, chlorine and only one substituted phenyl ring. Full-matrix least-squares refinement phased on F gave the refinement parameters in Table 2, with anisorropic thermal parameters applied for non-hydrogen atoms. Hydrogen atoms were refined isotropically, initially placed in calculated positions, the rotation of the methyl groups obtained from at least one peak of a difference Fourier map and then all hydrogen atoms refined in the final cycles. Anomalous dispersion terms were included for Sn and Cl atoms [23]. While scatering factors were

Table 3
Alom comodinates and equivalent isorropic temnerame factors

Arom	\boldsymbol{x}	y	$こ$	$B_{\text {nu }}$
$\left(\mathrm{m}-\mathrm{CH}_{j} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{j}_{3} \mathrm{SnCl}\right.$				
Sn	0	0	0	$2.435(4)$
Cl	0	0	-0.3238(1)	4.02(3)
C(1)	0.0862(2)	0.15892)	$0.07193)$	2.63 (9)
C(2)	0.0732(2)	$0.1905(2)$	$0.2433(3)$	3.023)
C(3)	$0.1312(2)$	$0.2933(2)$	0.2973 3)	3.43(10)
C(4)	$0.201862)$	$0.36412)$	$0.1760(4)$	3.71 (11)
C(5)	0.2149(2)	$0.3347(2)$	0.0049(4)	4.02(11)
C(6)	0.1575(2)	$0.2315(2)$	- $0.0473(3)$	3.32(10)
C(31)	$0.1160(3)$	0.32654(3)	0.4841(4)	5.25(16)
$\left(3,5-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~J}_{3} \mathrm{SnCl}\right.$				
Sn	0	0	0	$3.376(10)$
Cl	0	0	$-0.1512(1)$	4.59(6)
C(1)	0.0724(3)	-0.07633)	0.1397(3)	3.72)
C(2)	$0.0530 \times 4)$	-0.1175(3)	$0.121 *(3)$	+.4(2)
C(3)	0.1045(4)	-0.1005(-1	$0.1540(3)$	$5.113)$
C(4)	0.1762(4)	-0.16104 4	$0.1025(4)$	5.0.3)
C(5)	0.1955(4)	-0.1230(4)	0.0218(3)	4.8(3)
C(6)	0.1475(3)	-0.0807(3)	-0.0100(3)	3,92)
C(31)	$0.0861(6)$	$-0.2012(6)$	0.2432(4)	7.75)
C(31)	0.2745(5)	-0.1243 (5)	-0.031644)	7.3(5)

[^3]from the literature [24], the enantiomorphy was confirmed by Bijvoet analysis of the Friedel pair reflections. Final atom coordinates (non-hydrogen atoms) and isorropic thermal parameters are given in Table 3. Tat bles of crystal data sets, anisotropic thermal parameters, complete bond lengths and angles. and hydrogen atom coordinates have been deposited at the Cambridge Crystallographic Data Centre. Structure factor lists are available from M.G.S.

3. Results and discussion

3.I. NMR studies:

3.1.1. Tin-1/9 data

Tin-119 chemical shifts for all compounds examined in this work are given in Table 4. The trend in (m $\left.\mathrm{YC}_{6}, \mathrm{H}_{4}\right)_{4} \mathrm{Sn}$ valaes clearly parallels that for the paracompounds (Fig. 1), as was found earlier for the

No.	Au'	Conc. (M)	$\left.\delta^{(16} \mathrm{Sn}\right)(\mathrm{yphn})$	$\left." J)^{11} 3 n^{-17} \mathrm{C}\right)\left(\mathrm{H}_{4}\right)^{7}$					
				$\bar{n}=1$	$n=2$	$n=2$	$n=3$	$n=3$	$n=4$
$\mathrm{Ar}_{4} \mathrm{Sn}$									
(A)	$\mathrm{C}_{4} \mathrm{H}_{3}{ }^{\text {J }}$	silt.	-128.84	531.1	35.5	-	53.1	-	10.7
(1)	$m \text {-Tol }$	$0.27 t$	-128.01	527.4	36.2	36.7	50.3	53.5	11.3
(2)	3.5-Xyl	0.224	127.50	521.8	36.3	-	53.0	-	11.4
(3)	m-Anis	0.334	-125.13	529.0	42.0	34.8	64.7	60.1	10.6
(1)	$0 \cdot \mathrm{Tol}$	sat.	-122.61	530.8	32.1	$+1.2$	+2.4	51.7	10.1
(5)	a-Anis	0.093	-136.30	575.8	n.o.	31.1	27.7	54.7	ก.\%.
(6)	$m-\mathrm{ClC}_{6} \mathrm{H}_{4}$	0.286	-126.32	532.0	$+1.8$	35.3	69.9	56.6	10.8
(7)	3.5-Cl $\mathrm{C}_{6} \mathrm{H}_{3}$	0.189	-122.65	535.0	40.3	-	76.9	-	9.7
(8)	$m-\mathrm{FC}_{6} \mathrm{H}_{4}$	6.092	--126.66	5.77 .3	+1.4	. 3.8	73.4	61.2	10.2
(9)	3.5-F $\mathrm{F}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	sat.	-119.58	$5+4.2$	40.6	-	89.8	-	
(10)	$p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	0.183	-134.02	536.8	40.1	-	53.1	一	12.2
(11)	$m-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	sat.	-126.31	ก.0.	43.8	40.0	n.0.	52.8	n.0.
$\mathrm{Ar}_{3} \mathrm{SuCl}$									
(B)	$\mathrm{C}_{6} \mathrm{H}_{5}{ }^{4}$	0.261	-44.81	615.7	-19.8		63.5		13.2
(12)	m-Tol	0.291	$-+2.33$	607.6	49.3	$+7.7$	62.9	66.5	14.0
(13)	3.5-Xyl	0.217	-39.68	602.6	48.5	-	65.5	-	13.7
(1)	m-Anis	0.411	-4.02	615.2	54.0	48.3	78.6	76.1	13.0
(15)	O-Tol	0.193	-32.28	603.9	42.1	5.3 .5	53.8	64.9	12.0
(16)	Mes	0.215	-84.39	596.1	45.2	-	54.2	-	11.3
(17)	o-Anis	$0.260)$	-56.68	684.8	ก.a.	34.1	35.2	67.6	9.4
$\mathrm{Ar}_{3} \mathrm{SuBr}$									
(C)	$\mathrm{C}_{6} \mathrm{H}_{5}{ }^{\text {d }}$	0.236	-60.01	5963	49.4	-	62.5	-	14.9
(18)	m-Tol	0271	-56.87	590.5	49.3	47.4	61.8	65.9	13.6
(19)	3,5-Xyl	0.238	-53.55	584.4	48.5	-	66.9	-	13.7
(20)	m-Anis	0.250	- 58.51	596.1	54.4	48.0	81.6	74.6	12.8
(21)	0 -Tol	0.235	-53.93	586.1	41.9	54.2	53.0	64.2	11.8
(22)	Mes	0.197	-120.98	579.8	45.3	-	53.6	-	11.7
(23)	O-Anis	0.201	-74.31	666.2	9.4	35.3	34.5	67.8	8.8
(24)	$m-\mathrm{Cl} \mathrm{f}_{6} \mathrm{H}_{4}$	0.285	-67.58	599.4	$5+.2$	47.0	84.0	71.4	12.5
(25)	$\mathrm{m}-\mathrm{FC}_{6} \mathrm{H}_{4}$	0.439	-67.31	608.8	53.8	46.7	88.6	75.3	12.3
(26)	mi-CFF $\mathrm{C}_{6} \mathrm{C}_{6} \mathrm{H}_{4}$	0.346	-6.7.817	613.9	56.6	49.2	n.o.	$6+.1$	n.c.
$\mathrm{Ar}_{3} \mathrm{SH} /$									
(D)	$\mathrm{C}_{6} \mathrm{H}_{5}{ }^{\text {d }}$	0.249	-113.38	570.9	48.6	-	61.1	-	14.6
(27)	$\mathrm{m} \text {-Tal }$	0.325	-108.47	563.6	48.4	47.4	61.8	65.9	13.6
(28)	3.5-Xyl	0.209	-103.71	558.8	47.7	-	64.7	-	13.8
(29)	m-Anis	0.206	- 110.52	568.1	54.0	47.3	78.2	73.6	12.3
(30)	0 -Tol	0.161	- 121.84	559.4	40.9	53.7	51.6	64.0	12.6
(31)	Mes	0.298	-217.10	554.0	43.7	-	52.5	-	11.8
(32)	o-Anis	0.398	-135.65	635.8	ก.\%.	34.1	33.1	67.6	9.4

[^4]
 asumst thone for $\left(m-\mathrm{YC}_{6} \mathrm{H}_{4} \mathrm{~S}_{4} \mathrm{Sn}\right.$.
$\mathrm{ArSn}\left(\mathrm{CH}_{3}\right)_{3}$ system [6], but in contrast to that case, for $\mathrm{Ar}_{4} \mathrm{Sn}$ the overall $\delta\left({ }^{119} \mathrm{Sn}\right)$ range is less for the metacompounds than in the para-series. Both $\mathrm{Ar}_{4} \mathrm{Sn}$ series show the same dependence on the resonance parameter [25] σ_{R} or $\sigma_{\mathrm{R}}{ }^{\text {o }}$ (Fig. 2), the point for tetraphenyltin being included in both cases. These results are consistent with the earlier suggestion [3] that for $\mathrm{Ar}_{4} \mathrm{Sn}_{n}$ the substituent effect depends on the π-electron donor ability of the substituents (igonified by σ_{R} or $\sigma_{\mathrm{R}}{ }^{\text {a }}$ values) to increase π-electron density at the ipso-carbon and thus indirectly cause a shift of the ${ }^{114} \mathrm{Sn}$ resonance to higher frequency.

In agreement with this picture, the meta-effect on $\delta\left({ }^{114} \mathrm{Sn}\right)$ is less than the para-effect but is synergic, the effect increasing as $\mathrm{F}>\mathrm{Cl}>\mathrm{CH}_{3}$. i.e. as the substituents are better π-donors. In contrast, the substituent

Fig. 2. Tin-119 chemieal shifts for $\left\{p-Y_{6} H_{4}\right)_{4} S n(\square)$ or (ar$\left.\mathrm{YC}_{\mathrm{n}} \mathrm{H}_{\downarrow}\right)_{+} \mathrm{Sn}(\mathrm{O})$ plotted dgainsi $\sigma_{\mathrm{R}}{ }^{\text {? }}$.

Fig. 3. Tin-119 chemical vhifis for ($m-\mathrm{YC}_{6} \mathrm{H}_{4} \mathrm{SnRr}$ ploted aguinst σ_{m}.
effect of the weak π-acceptor group, $\mathrm{CF}_{3}\left(\sigma_{\mathrm{R}}{ }^{0}=0.10\right.$ [25]) does not follow from the trends slown in Fig. 2. $\delta\left({ }^{114} \mathrm{Sn}\right.$) being at lower (para) or higher (meta) frequency than the predicted values, $-130,9$ and -129.7 ppm respectively. This implies that a different substituent effect mechanism is required for this case. Lastly, we note. as for the $\mathrm{ArSnf}\left(\mathrm{CH}_{3}\right)$, system [6]. that tin-1 19 shifts for $\mathrm{Ar}_{4} \mathrm{Sn}$ correlate well with shifts of lead-207 in the corresponding $\mathrm{Ar}_{+} \mathrm{Pb}$ compounds [26]. Thus the overall correlation has $\delta\left({ }^{207} \mathrm{~Pb}\right)=$ $2.068\left({ }^{119} \mathrm{Sn}\right)+88.3(n=11 . r=0.984)$, which is consistent with the more general one noted for ${ }^{2117} \mathrm{~Pb}$ and ${ }^{119}$ Sn chemical shifis [27] as well as that for a limited number of tetra-aryls [28]. Our data permit analysis by substituent position, para: $\delta\left({ }^{207} \mathrm{~Pb}\right)=1.99 \delta\left({ }^{119} \mathrm{Sn}\right)+$ $78.6(n=5 . r=0.996)$, meta: $\delta\left({ }^{207} \mathrm{~Pb}\right)=3.198\left({ }^{119} \mathrm{Sn}\right)$ $+2325(n=5, \quad r=0.995)$, ortho: $8\left({ }^{207} \mathrm{~Pb}\right)=$ $2.488\left({ }^{119} \mathrm{Sn}\right)+141.7(i=3, r=0.999)$. This would indicate that while substituent effects in $\mathrm{Ar}_{4} \mathrm{Sn}$ and $\mathrm{Ar}_{4} \mathrm{~Pb}$ are very similar, they are not identical.

Only the $\mathrm{Ar}_{;} \mathrm{SnBr}$ series was studied in the same detail as the $\mathrm{Ar}_{4} \mathrm{Sn}$ system. Comparison of $\delta\left({ }^{119} \mathrm{Sn}\right)$ values for the para- and mera-analogues shows no correlation ($r=0.42$) but the chemical shifts for the meta series do correlate well with σ_{m} or better $\sigma_{\mathrm{m}}{ }^{\text {ch}}$ (Fig. 3), even with the datum point for the CF, substituent included. This would imply that for (m $\left.\mathrm{YC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{SnBr}$ a ground state substituent effect predominates, that is, as Y becomes more electron attracting overal!, the ionic character of the $\mathrm{Sn}-\mathrm{Br}$ bond diminishes and the tin resonance shifts to lower frequency [29].

Two distinct ortho-effects are observed using CH_{3} and $\mathrm{CH}_{3} \mathrm{O}$ as substituents. For $o-\mathrm{CH}_{3}$ in $\mathrm{Ar}_{4} \mathrm{Sn}$ and $\mathrm{Ar}_{3} \mathrm{SnX}$ ($\mathrm{X}=\mathrm{Cl}$. Br), an intrease in frequency for δ (${ }^{19} \mathrm{Sn}$), almost the same is for p - CH_{3}, is seen. This is
probably an elecironic effect since σ_{0}° [25] has almost the same value as ($\sigma_{\mathrm{D}}, \sigma_{\mathrm{p}}{ }^{\circ}$) and ($\sigma_{\mathrm{R}}, \sigma_{\mathrm{R}}{ }^{\circ}$) for this substituent. However, for (o-Tol $)_{3} \mathrm{SnI}$ a decrease in $\delta\left({ }^{19} \mathrm{Sn}\right)$ occurs. This effect is magnified with $\mathrm{CH}_{3} \mathrm{O}$ as the ortho-group and changes for $\mathrm{Ar}_{3} \mathrm{SnX}$ as $\mathrm{X}=\mathrm{Ar}<$
$\mathrm{Cl}<\mathrm{Br}<\mathrm{I}$. The effect of two $0-\mathrm{CH}_{3}$ groups in the (Mes) ${ }_{3} \mathrm{SnX}$ series is even more dramatic, with $\delta^{119}{ }_{\mathrm{Sn}}=$ -217.10 ppm for (Mes) $)_{3} \mathrm{SnI}$ approaching the range appropriate to five-coordinate triphenyltin halide systems [30].

Tuble 5
${ }^{1} \mathrm{C}$ NMR chemical shifts (ppm) for $\mathrm{Ar}_{2} \mathrm{Sn}$ and $\mathrm{Ar}_{3} \mathrm{SnX}$ in CDCl_{3}

No. ${ }^{\text {a }}$	i-C	$\bigcirc \mathrm{C}^{5}$	o-C	mec. ${ }^{\text {b }}$	m-C	$p-\mathrm{C}$	
$\mathrm{Ar}_{4} \mathrm{Sn}$							
(A)	138.04	137.31		128.69		129.17	
(1)	137.95	134.26	137.77	137.95	128.33	129.84	$\mathrm{CH}_{3}: 8\left({ }^{13} \mathrm{C}\right) 21.53:{ }^{4}\left({ }^{(18)} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) 4.0$
(2)	138.09	134.95	-	137.66	-	130.78	$\left.\mathrm{CH}_{3}: \bar{\delta}^{(13} \mathrm{C}\right) 21.41$
(3)	138.86	122.55	129.33	159.40	129.50	114.34	$\mathrm{CH}_{3} \mathrm{O}: \delta\left({ }^{(3} \mathrm{C}\right) 55.00$
(-1)	139.64	145.00	137.42	129.59	125.77	129.14	CH: $\left.\left.\mathrm{B}^{(13} \mathrm{C}\right) 25.05 ;^{3} \mathrm{~J}^{(14)} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) 27.6$
(5)	130.12	163.57	138.00	109.50	121.04	129.66	$\mathrm{CH}_{3} \mathrm{O}: 8\left({ }^{(3 \mathrm{C}} \mathrm{C}\right) 55.14$
(6)	138.38	136.29	134.82	135.42	130.24	130.00	
(7)	138.04	134.17	-	136.38	-	130.72	
(8)	138.61	123.25	132.54	162.99	130.50	116.80	$\left.{ }^{3} \mathrm{~J}^{19} \mathrm{~F}-\mathrm{m}^{13} \mathrm{C}\right) 6.7 .{ }^{1},\left({ }^{(19} \mathrm{F}-\mathrm{i}^{13} \mathrm{C}\right) 3.3 .{ }^{+} \mathrm{J}\left({ }^{14} \mathrm{~F}-0^{19} \mathrm{C}\right) 3.2$. ${ }^{4}\left({ }^{(119} \mathrm{Sn}-{ }^{19} \mathrm{\Gamma}\right) 28.2$ "
(9)	138.31	118.98	-	163.47	-	106.12	$\left.{ }^{1} \cdot\left({ }^{19} \mathrm{~F}-m^{13} \mathrm{C}\right) 256.4,{ }^{2} \int^{19} \mathrm{~F}-p^{19} \mathrm{C}\right) 24.7,{ }^{3} J\left({ }^{19} \mathrm{~F}-\mathrm{c}^{13} \mathrm{C}\right) 15.7$. $\left.{ }^{4} \int^{19}{ }^{19} \mathrm{Sn}-{ }^{14} \mathbf{F}\right) 318$
(10)	140.79	137.30	-	125.57	-	132.17	
(11)	136.84	133.13	140.26	131.41	129.42	126.89	$\begin{aligned} & \left.\left.C F_{3}: 8\left(^{13} \mathrm{C}\right) 124.02:{ }^{1} /{ }^{10} \mathrm{~F}-1{ }^{19} \mathrm{C}\right) 272.9{ }^{2} \iint^{19} \mathrm{~F}-m^{13} \mathrm{C}\right) 32.1, \\ & \left.{ }^{(19} \mathrm{F}-0^{13} \mathrm{C}\right) 3.8 .{ }^{3} J\left({ }^{19} \mathrm{~F}-p^{13} \mathrm{C}\right) 3.8,{ }^{4} J\left({ }^{19} \mathrm{~F}-m^{13} \mathrm{C}\right) 1.4 \end{aligned}$
$\mathrm{Ar}_{3} \mathrm{SnCl}$							
(B)	137.39	136.18		129.03		130.24	
(12)	137.21	133.06	136.57	138.74	128.84	131.20	$\mathrm{CH}_{3}: 8$ (${ }^{13} \mathrm{C}$) $21.49 ;{ }^{4}\left({ }^{149} \mathrm{Sn}-{ }^{3} \mathrm{C}\right) 4.6$
(13)	137.15	133.34	-	138.44	-	132.11	$\left.\mathrm{CH}_{3}: 8\left({ }^{13} \mathrm{C}\right) 21.36:{ }^{+} \mathrm{J}^{119} \mathrm{Sn} \cdot{ }^{13} \mathrm{C}\right) 5.4$
(14)	138.06	121.20	128.05	159.76	130.00	115.95	CH,O: $\delta\left({ }^{13} \mathrm{C}\right) 55.15$
(15)	138.69	$1+4.55$	136.27	170.13	126.10	130.49	$\mathrm{CH}_{3} \div \delta\left({ }^{13} \mathrm{C}\right) 24.69 *{ }^{3}\left({ }^{19}{ }^{19} \mathrm{Sn}-{ }^{17} \mathrm{C}\right) 35.3$
(16)	141.37	14.10	-	128.98	-	139.50	$0-\mathrm{CH}_{3}: 8\left({ }^{19} \mathrm{C}\right) 25.21:{ }^{3} \mathbf{J}\left({ }^{16} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) 40.4 . \mathrm{p}-\mathrm{CH}_{3}: 8\left({ }^{13} \mathrm{C}\right) 21.01$
(17)	129.13	162.76	136.54	109.99	121.73	131.32	$\mathrm{CH}_{3} \mathrm{O}: 8\left({ }^{13} \mathrm{C}\right) 55.47$
(C)	137.16	136.37	-	129.32	-	130.58	
(18)	136.87	133.12	136.65	138.70	128.80	131.13	$\mathrm{CH}_{3}: 8\left({ }^{13} \mathrm{C}\right) 21.50$
(19)	136.82	133.64	-	138.38	-	132.04	$\left.\mathrm{CH}_{3}: 80{ }^{1.3} \mathrm{C}\right) 21.35:{ }^{4}\left({ }^{16}{ }^{19} \mathrm{Sn}^{-13} \mathrm{C}\right) 5.4$
(20)	137.78	121.33	128.14	159.72	129.95	115.87	$\left.\mathrm{CH}_{4} \mathrm{O}: 81{ }^{13} \mathrm{C}\right) 55.19$
(21)	138.12	144.53	136.46	130.17	126.11	130.48	$\left.\mathrm{CH}_{4}: 8\left({ }^{13} \mathrm{C}\right) 24.77:^{3} \mathrm{~J}^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) 34.7$
(22)	141.14	144.18	-	129.12	-	139.54	
(23)	128.82	162.71	136.77	110.02	121.71	131.33	$\mathrm{CH}_{3} \dot{O}: 8\left({ }^{13} \mathrm{C}\right) 55.46$
(24)	137.71	135.45	133.85	135.7?	130.49	130.98	
(25)	137.94	122.53	131.60	163.00	130.84	117.89	${ }^{1} J\left({ }^{(19} \mathrm{F}-m^{13} \mathrm{C}\right) 252.5,{ }^{2} \cdot\left({ }^{14} \mathrm{~F}-\boldsymbol{p}^{13} \mathrm{C}\right) 20.8$. $\left.{ }^{2} J^{19} \mathrm{~F}-0^{13} \mathrm{C}\right) 19.7$. $\left.{ }^{7} J J^{19} \mathrm{~F}-m^{13} \mathrm{C}\right) 7 . \mathrm{I},{ }^{7} J\left({ }^{19} \mathrm{~F}-i^{13} \mathrm{C}\right) 3.8,{ }^{4} J\left({ }^{19} \mathrm{~F}-\sigma^{13} \mathrm{C}\right) 3.2$. $\left.{ }^{4} \mathrm{~J}^{116} \mathrm{Sn}^{19} \mathrm{~F}\right) 34.4$ *
$\begin{aligned} & \mathrm{Ar}_{,}, S_{1 H} \mathrm{I} \\ & (26) \end{aligned}$	136.67	132.39	139.36	131.72	129.72	127.78	
(D)	136.30	136.30	-	129.03	-	130.24	
(27)	136.24	133.25	136.79	138.60	128.72	130.99	$\left.\mathrm{CH}_{4}: 8{ }^{17} \mathrm{C}\right) 21.51$
(28)	136.19	133.78	-	138.27	-	131.90	$\mathrm{CH}_{3}: 8$ ($\left.\left.^{13} \mathrm{C}\right) 21.35 ;{ }^{+}{ }^{19}{ }^{19} \mathrm{Sn}-{ }^{17} \mathrm{C}\right) 5.3$
(29)	137.17	121.58	128.25	159.62	129.85	115.69	$\mathrm{CH}_{3} \mathrm{O}: 8\left({ }^{1.3} \mathrm{C}\right) 55.21$
(30)	136.94	144.44	136.81	130.20	126.07	130.42	$\left.\mathrm{CH}_{3}: 8\left({ }^{13} \mathrm{C}\right) 24.94:{ }^{3} \mathrm{~s}^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) 34.8$
(31)	140.14	14.02	-	129.00	-	139.30	
(32)	127.94	162.59	137.03	110.04	121.54	131.29	$\left.\mathrm{CH}_{3} \mathrm{O}: 8{ }^{13} \mathrm{C}\right) 55.35$

[^5]

Fig. 4. View of the molecule ($\left.3.5-\left(\mathrm{CH}_{8}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)_{3} \mathrm{SnCl}$ (II) showing the numbering scheme for I and II.

3.1.2. Carbon-13 data

One bond (${ }^{119} \mathrm{Sn}^{13} \mathrm{C}$) coupling constants (Tablc 4) for $\mathrm{Ar}_{4} \mathrm{Sn}$ and $\mathrm{Ar}_{3} \mathrm{SnBr}\left(\mathrm{Ar}=m-\mathrm{YC}_{6} \mathrm{H}_{4}\right)$ both qualitatively correlate with σ_{1}, σ_{m}, or $\sigma_{\mathrm{m}}{ }^{\circ}\left(n=5\right.$ (with CF_{3}); $r=0.74-0.78 \quad\left(\mathrm{Ar}_{4} \mathrm{Sn}\right), \quad r=0.82-0.81 \quad\left(\mathrm{Ar}_{3} \mathrm{SnBr}^{2}\right)$ which is in contrast with the inverse quantitative correlation with σ_{R} or $\sigma_{R}{ }^{0}$ found for para-substituests [3]. Thus, the electronic effects are opposite, meta-substituents which are better σ-electron acceptors cause ${ }^{1} J_{S_{n}-C}$ values to increase while para-substituents must be stronger π-electron donors to have the same effect. The effects of CH_{3} and $\mathrm{CH}_{3} \mathrm{O}$ as ortho-substituents are contradictory, as shown by the orders of ${ }^{1} J_{\mathrm{S}_{\mathrm{n}}-\mathrm{c}}$ data, for all four aryltin systems examined: $\mathrm{CH}_{3}, o<m<p$, but for $\mathrm{CH}_{3} \mathrm{O}, m<p<0$.

Carbon-13 chemical shift data (Table 5) show changes typical of the corresponding substituted benzenes and can be closely reproduced ($\pm 2 \mathrm{ppm}$) by the additivity rule [31] $(\mathbf{A}), \delta(\mathrm{ppm})=128.5+\Sigma Z_{2}(\mathrm{X})$, where $Z_{u}(\mathrm{X})$ is the substituent chemical shift parameter ($\mathbf{p p m}$) for the given position (a) derived from data for the appropriate $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{X}$. This has already been validated for various $\mathrm{Ar}_{+} \mathrm{M}(\mathrm{M}=\mathbf{S i}-\mathrm{Pb})[32]$. Oui results (available from the authors (I.W.)) extend this agreement to $\mathrm{Ar}_{3} \operatorname{SnX}(X=$ $\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$, the calculations taking into account the slight variation in $Z_{4}(S n)$ required with different aryltin systems [33]. Of more interest are systems which do not agree with (A), i.e. o-anisyl- or mesityltin compounds.

Tatle 6
Selected bornd lengths (A) and angles (${ }^{\circ}$)

$\left(\mathrm{al}\left(\mathrm{m}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{SnCl}\right.$			
$\mathrm{Sn}-\mathrm{Cl}$	2.379(1)	Cl- Sn^{3}	4.969(1)
Sn-CK1)	2.124(2)	$\mathrm{C}(3)-\mathrm{C}(31)$	1.519(4)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.392(3)$	C(1)-C66)	1.38663)
$\mathrm{Cl}-5 \mathrm{n}-\mathrm{C}(1)$	104.40\{6)	$\mathrm{C}(1)-\mathrm{Sn}-\mathrm{C}(1)^{\text {n }}$	114.03(14)
$\mathrm{Sn}-\mathrm{C}(1)-\mathrm{C}(2)$	119.61(15)	Sn-C(1)-C(6)	$121.02(16)$
$\mathrm{Cl}-\mathrm{Sn}-\mathrm{C}(1)-\mathrm{C}(2)$	158.2(1)	$\mathrm{Cl}-\mathrm{Sn}-\mathrm{C}(1)-\mathrm{C}(6)$	- 23.7 (1)
(b) $\left(3,5-\left(\mathrm{CH}_{4}\right)_{2} \mathrm{C}_{n} \mathrm{H}_{4}\right)_{3} \mathrm{SnCl}$			
$\mathbf{S n - C l}$	2.3575(3)	$\mathrm{Cl}-\mathrm{Sn}^{\text {* }}$	5.4392)
$\mathrm{Sn}-\mathrm{CK} 1)$	2.124(4)	C(3)-C(31)	1.49838)
C(5)-C(5])	1.50998	C(1)-C(2)	$1.39346)$
C(1)-C(6)	1.381(6)		
$\mathrm{Cl}-\mathrm{Sn}-\mathrm{C}(1)$	106.965()	C(1)-Sn-Cl1) ${ }^{\text {b }}$	181.942)
$\mathrm{Sn}-\mathrm{C}(1)-\mathrm{Cl} 2)$	118.4(3)	$\mathrm{Sn}-\mathrm{C}(1)-\mathrm{C}(6)$	122.43)
$\mathrm{Cl}-\mathrm{Sn}-\mathrm{C}(1)-\mathrm{C}(2)$	-157.2(3)	Cl-Sn-C(1)-C(6)	27.362)

[^6]For both series. the $\delta\left({ }^{13} \mathrm{C}\right)$ values for the ipso-carion are approximately 6 ppm to higher frequency than the values calculated using (A), a change noted also for triphenyltin systems ongoing from four- to five-coordination at tin [30].

3.1.3. The ortho-effect

The steric ortho-effect seen in this work was also observed earlier for the $\mathrm{ArSn}\left(\mathrm{CH}_{3}\right)_{3}$ system [6], and has also been reported in the spectra of triarylphosphines and their derivatives [34-36]. In both $\mathrm{Ar}_{3} \mathrm{P}(\mathrm{X})$ and $\mathrm{Ar}_{3} \mathrm{SnX}$ cases, the ortho-effect varies with the group X . In fact, this ortho-effect is a particular example of the more general ' γ-effect' in the spectra or heavy nuclei (i.e. ${ }^{13} \mathrm{C},{ }^{19} \mathrm{~F},{ }^{31} \mathrm{P}$, etc.) [37] where, ron evanple, methyl substitution at the γ-position in the fragment $\mathbf{V}_{\mathbf{r}}-\mathbf{X}_{\mathrm{p}}-$ $Y_{\alpha}-Z_{\beta}$ may cause a shifi to lower frequency (upfield) of the $\delta(Y)$ value for the nucleus Y_{a}, and this has been correlated with an increase in the $\mathrm{X}-\mathrm{Y}-\mathrm{Z}$ bond angle [38]. It would thus be of interest to correlate the large

Fig. 5. Packing diagram for ($\left.\mathrm{m}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{SnCl}$ (1); view perpendicular to the c-axis.

Fig. 6. Packing diagram for II: view down the c-axis.
ortho-effect for (Mes) ${ }_{3} \mathrm{SnI}$ compared with $\mathrm{Ph}_{3} \mathrm{Snl}$. with the change in the geometry around tin found in the crystal structures of these compounds [14]. Similarly, the ortho-effects of the $\mathrm{CH}_{3} \mathrm{O}$ - group seen in the spectra of (o-Anis) $)_{4} \mathrm{Sn}$ and (o-Anis $)_{3} \mathrm{SnX}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$. I). which include an increase in the ${ }^{1} J_{(S n-C)}$, value, possibly a sign of increased coordination at tin [30], may correlate with the shorter $\mathrm{Sn}-\mathrm{O}$ distances found in the crystal structures of (O-Anis) $\mathrm{Sn}[1,39]$ and ($o-$ Anis) ${ }_{3} \mathrm{Snl}$ [40], which might indicate weak Sn -O interactions. increasing the coordination at tin. However. such correlations of ortho-effects deduced from solution NMR studies with solid-state structural data must be viewed as completely speculative and clearly solidstate NMR data are required for more definitive conclusions to be drawn.

> 3.2. Structures of $\left(\mathrm{m}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{3}\right)_{3} \mathrm{SnCl}(\mathrm{I})$ and (3.5$\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)_{3} \mathrm{SnCl}(\mathrm{II})$

Crystal data for both I and II (Table 2) as well as for $\left(m-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{SnX}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})[41]$ show the compounds to have trigonal space groups which. in fact, correspond to their molecular symmetry, shown for II in Fig. 4 with selected geometric parameters in Table 6. In both compounds, the molecules pack closely head to tail (Fig. 5), with the $\mathrm{Sn}-\mathrm{Cl}$ bonds lying on the three-fold principal axes. Thus, both I and II have the urigonal propeller conformation required for the lowest molecular energy. In contrast, nearly all other $\mathrm{Ar}_{3} \sin X$ structures nave unsymmetric molecules which pack in space groups $P 2_{1} / c\left(P 2_{1} / a\right.$ or $\left.P 2_{1} / n\right)$ or pseudo- $P 2_{1} / c$ $(P-1)[7.14 .40]$ which are required to maximize crystal
packing efficiency, even though they are not then in the lowest molecular energy conformation [42].

All intermolecular interatomic distances in I are greater than van der Waals, the most significant interaction being the approach of a methyl hydrogen to o - and m-carbon atoms ($2.93-2.95 \AA$) in a phenyl ring of a molecule in a neighbouring column. Simulation of the crystal structure of II by replacing meta-hydrogens in I with methyl groups gives rise to short intercolumn H-H interactions ($1.82-1.92 \AA$). This steric strain is accommodated in the structure of II by (a) increasing the intermolecular distance ($\mathrm{Sn}-\mathrm{C}$) in the chain so the molecules are further apart and (b) the bending of phenyl rings in these molecules away from each other so the orientation of rings of molecules in the same column altemates down the 'chain' (Fig. 6). i.e. both enantiomorph confirmations are present in 11 as compared with one in the case of I.

Recently, a trigonal polymorph of triphenyltin chloride has been identified [43]. However, the structure has a trigonal $\mathrm{Ph}_{3} \mathrm{SnCl}$ surrounded by three equivalent asymmetric $\mathrm{Ph}_{3} \mathrm{SnCl}$ molecules so that the 'tetramer' can still pack efficiently in the resulting crystal. The structures of I and II are thus the tirst example of $\mathrm{Ar}_{3} \mathrm{SnX}$ structures where all molecules have the trigonal symmetry expected for the lowest molecular energy conformation.

Acknowledgements

The financial support of the Fonds FCAR-Programmes, ACSAIR. "Actions spontanées" of le Gouvernement du Quebec is most gratefully acknowledged.
as is the Department of Chemistry, McGill University where part of this work was carried out. The authors would like to thank the following undergraduate students for technical assistance in the course of this work: Carmella Roy, Anita Berzeau, Robin Holmes, Bryan Denning, Kevin McGinn, Rayad Moore, Kerri-Lee Illingworth and Gennario Barbiero.

References

[1] 1. Wharf and M.G. Simard, Acta Crystallogr.. B51 (1995) 973.
[2] 1. Wharf, Can. J. Spectrosc., 32 (1987) 129.
[3] 1. Wharf, Inorg. Chim. Acta, 159 (1989) 41.
[4] 1. Wharf and M.G. Simard, Acta Cyystallogr., C47 (1991) 1314 and references cited therein.
[5] I. Wharf and M.G. Simard, Acra Crysallogr., C47 (1991) 1605 and references cited therein.
[6] H.-J. Kroth, H. Schumann, H.G. Kuivala, C.D. Schafffer, Jr. and J.J. Zuckerman. J. Am. Chem. Soc., 97 (1974) 1754.
[7] I. Whidrf, A.-M. Lebuis and H. Lamparski, Acta Cryisfallogr., C52 (1996) 2477 and references cited therein.
[8] I. Wharf and M.G. Simard, J. Organomet. Chem., 332 (1987) 85.
[9] A. Stem and E.I. Becker, J. Org. Chem., 29 (1964) 3221.
[10] D.N. Kravtsov, B.A. Krasov, E.N. Fedin, B.A. Faingor and L.S. Golovehenko. Bull. Acad. Sci., (USSR) Dii. Chem. Sci., (1969) 477.
[11] H.C. Brown and C.W. McGary, J. Am. Chem. Soc., 77 (1955) 2300.
[12] L.I. Smith and F.L. Taylor, J. Am. Chem. Soc., 57 (1935) 2370.
[13] A. Michaelis, Chem. Ber., 28 (1895) 588.
[14] M.G. Simard and I. Wharf, Acta Crystallogr., C50 (1994) 397.
[15] J.G.A. Luijten and G.J.M. van der Kerk, J. Appl. Chem., 11 (1961) 35.
[16] R.G. Neville, Can. J. Chem., 41 (1963) 814.
[17] K.A. Kocheskov, M.M. Nadi and A.P. Alexandrov, Chem. Ber., 67 (1934) 1348.
[18] T.N. Srivastava and R. Rupainwar, Indian J. Chem., 9 (1971) 1411.
[19] 1. Wharf, Can. J. Spectrosc., 3 (1986) 27.
[20] T.N. Srivastava and S.N. Bhattacharya, J. Inorg. Nwel. Chems., 29 (1967) 1873.
[21] E.]. Gabe, Y. LePage. J-P. Chazland and F.L. Lee, J. Appl. Coyst., 22 (1989) 384.
[22] G.M. Sheldrick, shewss-86. Packnge for Crystal Sirsctare Determination, University of Gotingem, 1986.
[23] D.T. Cromer and DJ. Liberman, J. Chem Phys., 53 (1970) 1861.
[24] DJ. Cromer and J.B. Mann, Acia Crystallogr., A24 (1968) 321; R.F Stewart. E.R. Davidson and W.T. Simpson. J. Chert Phys.. 42 (1965) 3175.
[25] C. Hansch and A. Leo, Subailuent Constumts for Correhaion Analysis in Chemistry and Biology, Wilry. New York. 1979.
[26] D.C. van Beelen H.O. van der Vooi and I. Wolsers. J. Organomet. Chem., I79 (1979) 37.
[27] T.N. Mitchell, J. Orgunomet. Chem., 255 (1983) 279.
[28] C. Schneider-Kcglin, B. Mahtiasch and M. Drager, J. Organomet. Chern., 469 (1994) 25.
[29] J.F. Hinton and RW. Briggs, J. Magn. Reson., 22 (1976) 447.
[30] J. Holecek, M. Nadvornik, K. Handlir assi A. Lycka, J. Organomet. Chent. 241 (1983) 177.
[31] D.F. Ewing, Org. Magn Reson., 12 (1979) 499.
[32] C. Schneider-Koglin, B. Mastriasch and M. Drägra, J. Organomet. Chevm., 448 (1993) 39.
[33] B. Mathiasch, Org. Magn. Reson., 17 (1981) 296.
[34] R.P. Pinnell, C.A. Megerle, S.L Masat and P.A. Kroon, J. Agri Chem Soc., 95 (1973) 977.
[35] S.O. Grim and A.W. Yankowsky. J. Org. Chess., 42 (1977) 1236.
[36] S.O. Grim and A.W. Yankowsky. Phosphorns Sulfis, 3 (1977) 191.
[37] K.R. Dinon, in J. Mason (ed.), Muftinuclear NMR, Plenum Press, New Yokk. 1987, pp. 380-381.
[38] D.G. Gorenstein, J. AmL Chem. Soc., 99 (1977) 2254.
[39] JN. Ross. JL. Wandell. G. Ferguson and J.N. Low, Acki Crystallogr., C50 (1994) 1703.
[40] R.A. Howie, I.N. Ross, JL. Wardell and J.N. Low. ricta Crystallogr., C50 (1994) 229.
[41] 1. Wharf and A-M. Lebuis, Acta Crystallogr., C52 (1996) 3025.
[42] C.P. Brock and J.D. Dunitz. Chem Afater.. 6 (1994) 1118.
[43] S.W. Ng, Acta Crystallogr., C5I (1995) 2292

[^0]: Corresponding wuthor
 ${ }^{1}$ Part IX; Ref. [1].

[^1]: ${ }^{3}$ Calculated values in parentheses
 ${ }^{6}$ Ar: $3,5-\mathrm{Xyl}=3,5-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{8} ; m$-Anis $=m-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} ; c-\mathrm{Anis}^{2}=0-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} ;$ Mes $=2,4,6-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2}$.

 - See tev:
 ${ }^{4}$ Recrystallisation solvent.
 ${ }^{*}$ Grignard reagent in THF.
 , $\mathbf{X}=\mathrm{I} . \mathrm{Y}=\mathrm{Cl}$ or Br .
 $\mathrm{F} \mathrm{X}=\mathrm{Br}, \mathrm{Y}=\mathrm{Cl}$.
 ${ }^{6}$ Reaction in toluene.

[^2]: ${ }^{2} w^{-1}=\sigma^{2}\left(F_{n}\right)+0.000!\left(F_{0}\right)^{2}$.

[^3]: $B_{\text {ino }}$ is the mean of the principal axes of the theminal ellipsoad.

[^4]: ${ }^{3} \mathrm{Tul}=\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{XyI}=\left(\mathrm{CH}_{3} \mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{3}, \mathrm{Anis}=\mathrm{CH}_{1} \mathrm{OC}_{6} \mathrm{H}_{4}, \mathrm{Mes}=2,4,6-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right.$.
 ${ }^{h}$ Data from carbon-13 spectra.

 * On substifuent side of phenyl ring.
 ${ }^{4}$ [3].

[^5]: "See Table 4.
 " On substituent side of phenyl ring.
 Dala from tin-119 spectra.

[^6]: $0.0 .1+2$
 b. y. $\mathrm{y} . \mathrm{z}$ or $\mathrm{y}-\mathrm{x}, \mathrm{r} .=$

 * $0.0 .2+1 / 2$

